

One interesting science field is “discrete AI” (probably has a few other names) which basically technically means “based on integers instead of floating point numbers”. It has a few more implications on the models being more mathematically clean, but that’s a long paragraph if I get into it.
The expecations are AI that is not based on absurd computing resources and black boxes, but getting the same benefits from low-power low-cost hardware and with outputs that can be more realistically queried to explain why the output became what it was.
E.g. if AI is used to make decisions on when to feed fish, and it feeds slightly too much, you’d want to be able to ask “why” and get a useful answer instead of today’s “yeah idunno magic computer said so i guess training data lol”
Yeah, funding is kinda not. I assumed the question was ignoring that, but I may have been mistaken.
Tsetlin machines are the ones I found most interesting. Strict yes/no logic stuff in the actual decision model, while the deeper complexity is in the training.